

Asymmetric Synthesis of Dienomycin C

Daniel L. Comins*, and Gary M. Green

Department of Chemistry

North Carolina State University, Raleigh, NC 27695-8204

Received 1 September 1998; revised 16 October 1998; accepted 19 October 1998

Abstract: The first asymmetric synthesis of dienomycin C was accomplished in seven steps and 46% overall yield.
© 1998 Elsevier Science Ltd. All rights reserved.

Dienomycin C (1), an alkaloid isolated from the *Streptomyces* strain MC67-C1 by Umezawa and coworkers has been found to exhibit antibiotic activity against some strains of *Mycobacteria*. Dienomycin C and its derivatives were the first examples of microbial metabolites containing piperidine or phenylbutadiene structural units. A racemic synthesis of 1 has been reported by Troin and coworkers. Herein we report the first asymmetric synthesis of the alkaloid using an enantiopure 2,3-dihydro-4-pyridone as a chiral building block.

The synthetic plan called for the preparation of known (*E,E*)-1-bromo-4-phenylbutadiene (**2**) and its conversion to Grignard reagent **3**. Vinyl bromide **2** was prepared from *trans*-cinnamaldehyde using the Takai olefination³ (*E/Z* = 7/1). Several attempts to form the vinyl Grignard by direct metalation using magnesium metal were unsuccessful. A two-step method involving lithium-halogen exchange with *t*-BuLi, followed by addition of anhydrous MgBr₂ in THF, gave the desired organometallic **3**. Addition of **3** to chiral 1-acylpyridinium salt **4**, formed in situ from 4-methoxy-3-(triisopropylsilyl)pyridine and the chloroformate of (+)-TCC⁴, provided the crude dihydropyridone **5** in quantitative yield and 86% de. Purification by radial PLC (silica gel, EtOAc/hexanes) afforded an 81% yield of pure **5**. Hydrolysis with NaOMe/MeOH followed by aqueous oxalic acid provided dihydropyridone **6** in 93% yield, and the chiral auxiliary ((-)-TCC) was recovered in 95% yield. Acylation of **6** with Boc-anhydride gave a 98% yield of enantiopure carbamate **7**. Enolate formation using NaHMDS in THF and methylation with methyl iodide provided a near quantitative yield of *trans*-dihydropyridone **8**. Conjugate reduction with L-Selectride® and removal of the Boc group using in situ formed TMSI gave a 77% yield of piperidone **9**. Finally, stereoselective reduction with L-Selectride® according to Troin's procedure² gave enantiopure dienomycin'C

(83%, mp 129.5 - 130.5 °C, $[\alpha]_D^{23}$ + 82.1 (c 0.03, CHCl₃); [lit. mp 130-131 °C, $[\alpha]_{589}^{20}$ + 85 (c 1.0, MeOH)]. The spectral properties of (+)-1 were in agreement with reported data. The natural product was constructed enantioselectively from 4 in seven steps and 46% overall yield. Syntheses of other piperidine-containing alkaloids using this strategy are under study in our laboratories.

Acknowledgement. We wish to express our appreciation to the National Institutes of Health (Grant GM 34442) for partial support of this work. G.M.G. also thanks the Burroughs Wellcome Fund for a graduate fellowship. NMR spectra and HRMS spectra were obtained at NCSU instrumentation laboratories, which were established by grants from the North Carolina Biotechnology Center and the National Science Foundation.

References and Notes.

- (a) Umezawa, S.; Tsuchiya, T.; Tatsuta, K.; Horiuchi, Y.; Usui, T.; Umezawa, H.; Hamada, M.; Yagi,
 A. J. Antibiot. 1970, 23, 20. (b) Umezawa, S.; Tatsuta, K.; Horiuchi, Y.; Tsuchiya, T.; Umezawa,
 H. J. Antibiot. 1970, 23, 28.
- 2. Ripoche, I.; Bennis, K.; Canet, J.-L.; Gelas, J.; Troin, Y. Tetrahedron Lett. 1996, 37, 3991.
- 3. Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408.
- 4. (a) Comins, D. L.; Joseph, S. P.; Goehring, R. R. J. Am. Chem. Soc. 1994, 116, 4719. (b) (+)- and (-)-TCC alcohols are available from Aldrich Chemical Company.